
Connected Chains DAGs (ccDAGs)

Abstract
While Merkle Direct Acyclic Graphs (DAGs) are not limited to a single root, having more 

than one is usually considered an anomaly that can be remedied by creating a new root 

node that links to each one of them. In this article, we introduce Connected Chains DAGs 

(we will call them ccDAGs) which is are a special case of a multi-root DAG.

Problem statement
At WeatherXM we have a large number of weather stations producing a flow of weather 

data that need to be stored on IPFS. We want

The answer to #1 is obvious: maintain X servers that will receive data from stations and 

store them in parallel. However this makes #2 and #3 a challenge. To solve this problem, we 

introduce ccDAGs, the ”Connected Chains DAGs”.

ccDAGs
One can visualise ccDAGs as a number of blockchains growing in parallel, where every X 

blocks contain a block linking to the heads of the rest of the chains.

More specifically, a C-N-ccDAG (for example, a 3-5-ccDAG) has the following properties:
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1. Data writes to happen in parallel to allow easy scaling of the system and also to avoid 

introducing a point of centralisation.

2. There must be a way for a third party that wants to retrieve all data from IPFS to do so.

3. There must be an efficient way for a third party that frequently traverses our IPFS data 

structures to retrieve deltas (new data).

Consists of C chains growing in parallel

In each one of the chains, every N blocks, there is a block linking to the current roots of 

the other C-1 chains.



While ccDAGs pose a number of challenges when the data of one block depend on the data 

of other blocks (which is the case of blockchains), they provide an attractive alternative to 

Merkle trees when storing data that have no dependencies to past states of the system.

Definitions and Properties

Block Height

We define block height as the length of the longest path starting from a block.

More formally:

Eventual Convergence

An important property of a C-N-ccDAG is that all C chains converge after R  blocks, in the 

sense that they contain the same blocks.

It is easy to prove that for any ccDAG

We define as Convergence Rate of a ccDAG, the minimum number R that satisfies the 

above statement. In a typical C-N-ccDAG, R=N, but this is not always the case as we will 

see later.

In other words, for chains A and B that are part of a C-N-ccDAG, every block we find after N 

steps while traversing chain A, can also be found while traversing chain B.

If a block links to no blocks, then its block height is 0.

If block B links to blocks C1, C2,..., Cn, then height(B) = max{ height(Ci), i=1..n } + 1

There is a natural number R, such that for any two roots r1, r2 and a block b linked from 
r1,
height(b) < height(r1)-N => there is a path from r2 to b 



Thanks to eventual convergence, a third party can traverse a ccDAG starting from any one 

of the root nodes and they will get all data, except a few (up to N) blocks at the root of each 

chain. A new traversal after some time will fetch all the data missed during the previous one 

and so on.

Parallelism

Thanks to Eventual Convergence, all chains in a ccDAG can grow in parallel, making 

ccDAGs a structure that can provide high bandwidth for write/store operations.

Flexibility

C and N do not have to stay constant throughout a ccDAG's lifetime. It is easy to 

add/remove chains and even change the frequency of link blocks.

However, when C or N change, one should be aware that the Convergence Rate may 

change too.

Implementation considerations

Optimising ccDAG traversal

Storing the block height in each block, provides an easy way for anyone who is regularly 

traversing a ccDAG to know where to stop: Consecutive reversals can stop at blocks with 

height max_prev_height_parsed-R, where R is the convergence rate of the ccDAG, knowing 

that all new blocks (in the convergence area) have been parsed.

Also, when traversing the same ccDAG frequently, the reader should make sure that the 

root it starts reading from has a higher block height than the one it started from during the 

last traversal. If the block height is equal or lower than the last root used, a new root should 

be picked. This should protect from reading from a chain that has not been updated for 

long.

Optimnising ccDAG creation



For a C-N-ccDAG, it is possible to have an implementation where each link block links to 

X<C-1 chains (not all other chains), as long as the implementation ensures that eventually 

there is a path to block_i_j that belongs to chain i from all other chains.

Such an implementation could be as simple as using a round robin algorithm to pick the 

chains to link to, or more complex based on physical network topology and geographic 

distribution.

One must keep in mind that in the case where link blocks link to X<C-1 chains, the 

Convergence Rate will probably be higher than N and must be calculated based on the 

implementation details.

Considerations when adding a new chain

When we add a new chain to a ccDAG (going from C-N-ccDAG to D-N-ccDAG, where D>C), 

it is recommended that the first block of the new chain links to all the other currently active 

chains.

Considerations when removing a chain.

Of course a chain can not be actually removed, as its root will be eventually linked from 

other chains. However, we can stop updating one of the chains.

In this case, it is recommended that before shutting down the instance(s) that maintained 

this chain:

a. The instances stop updating its chain.

b. Makes sure that its last root block is linked to from other chains


